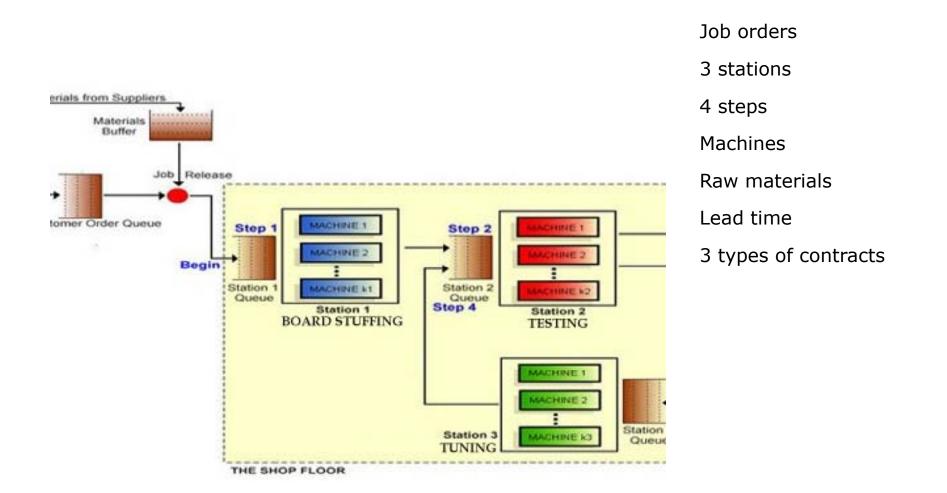
Structural Transparency of a Factory Simulation Model

Oleg Pavlov, WPI Khalid Saeed, WPI Larry Robinson, Cornell University

Webinar at Department of International Finance, Financial University, Moscow, Russia. February 10, 2014. Available online: http://www.iff.fa.ru/index.php?q=en/en/content/seminar-2-02122013



Littlefield Simulation

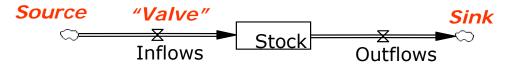
- Part of an Executive MBA course at Cornell University on Operations Management
- Played by students over 5 days
- Students are professionals, average age about 35
- Commercial online simulation of a small factory
- Learning objectives: managing inventory, inprocess queues
- This team project is worth 12% of the grade
- Deliverables: participation in the simulation, written report

Littlefield Simulation

³ Cornell University

What does this project do?

- Original simulation (Littlefield Technologies) is a <u>black box</u>
- Purpose of this project is to create a <u>debriefing</u> protocol for a business simulation
- Use <u>simulation of a simulation</u> approach
- System Dynamics methodology is used to create a <u>simulation of a simulation</u>
- We add structural transparency to a black box
- The model, the causal loop diagrams, stock and flow diagrams as well as documentation of structural equations can also be used for <u>prior</u> <u>exploration</u>


Why debriefing?

- Historically 3 uses of debriefing: military, psychological experiments, education
- The size and the use of debriefing can vary
 - Talking in groups
 - A journal
 - A written report
- Our debriefing is an instructional enhancement
 - Debriefing improves learning
 - Learning vs. performance in the simulation
- Helps the adoption of simulation-based instruction

System dynamics

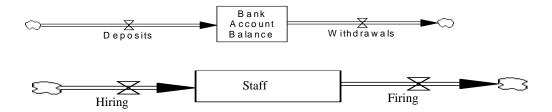
Stocks

- Stocks define the state of the system
- Stocks = Levels = States = Accumulations = Integration
- Stocks can only change by the action of flows
- Stocks decouple flows
 - Make it possible for an inflow and outflow to be different (i.e, create a disequilibria) E.g., spend more than earn
 - Make it possible for inflow to be controlled by different sources of information
 - Stocks create delays
- Things that accumulate
- What is left if you stop time
 - Stocks have inertia, memory, persistence
 - If you turn off the flow to a stock, the stock remains
 - "Clouds" represent stocks outside the system boundary

6 Cornell University

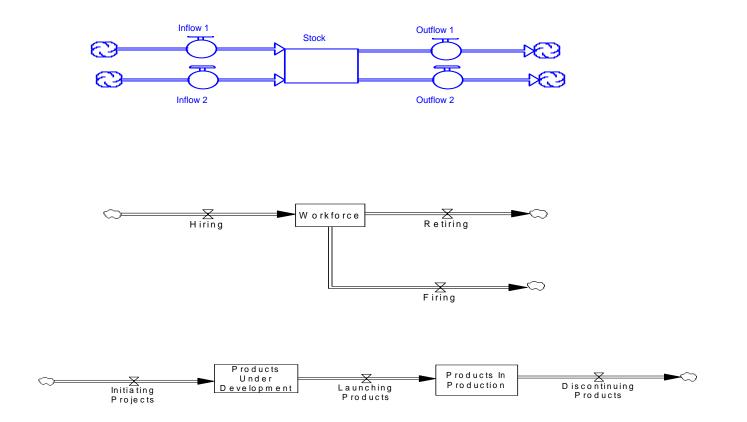
System dynamics

- Flows
 - A flow defines the rate of change in the system state
 - Flow = rate
 - Flows show some activity
 - Disappear (or "stop") if you stop time
 - Units of flows are units of the stock over time
- Math of stocks and flows

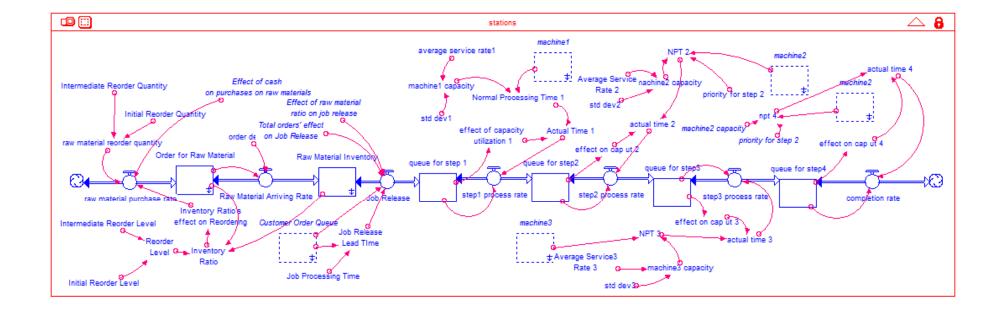

$$S_t = \int_{t_0}^t (Inflow - Outflow) ds + S_{t_0}$$

- Usage example
 - Company resources are stocks

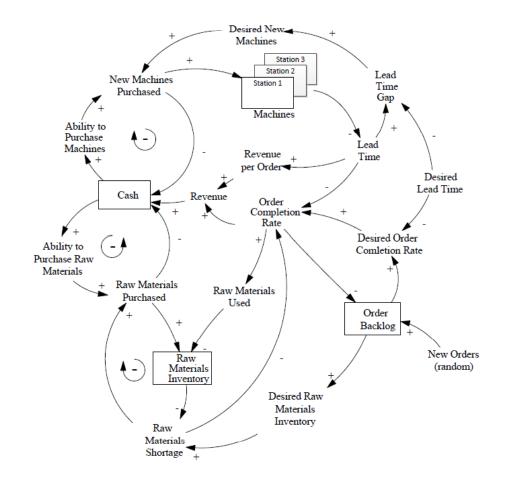
Cornell University


Related terminology in other fields

Field	<u>Stocks</u>	<u>Flows</u>
Economics/SD	Stocks	Flows
Original SD	Levels	Rates
Accounting	Balance	Income
Math	Integral	Derivative


Cornell University

Examples from system dynamics


Cornell University

Manufacturing flow

10 Cornell University

Causal loop diagram of Littlefield simulation

- People have difficulty with accumulation, feedback and delays
- With this debriefing students can visualize the stocks, flows, delays
- Students can discuss the structure of the simulation (structural transparency)
- Students can generalize the lessons from the simulation to general problems of operations including <u>resource based</u> <u>view of the firm</u>

Research Designs to Measure the Value of Debriefing

Group A	Group B	Group C	Group D	Group E
Non-game teaching method	Game – debriefing	Game + minimal debriefing	Game + full debriefing	Game + full debriefing + 2 nd game + debriefing
Pretest	Pretest	Pretest	Pretest	Pretest
Teaching C	Game	Game	Game	Game 1
		Postgame test	Postgame test	Postgame test
		Small debriefing	Full debriefing	Full debriefing
				Posttest 1
			Game 2	
				Full debriefing
Posttest	Posttest	Posttest	Posttest	Posttest 2
Long-term test	Long-term test	Long-term test	Long-term test	Long-term test

Adapted from Crookall (2010)

12 Cornell University